A common generalization of the Frölicher-Nijenhuis bracket and the Schouten bracket for symmetric multivector fields

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Z-graded extensions of Poisson brackets

A Z-graded Lie bracket { , }P on the exterior algebra Ω(M) of differential forms, which is an extension of the Poisson bracket of functions on a Poisson manifold (M,P ), is found. This bracket is simultaneously graded skew-symmetric and satisfies the graded Jacobi identity. It is a kind of an ‘integral’ of the Koszul-Schouten bracket [ , ]P of differential forms in the sense that the exterior d...

متن کامل

Generating Operators of the Krasil’shchik-schouten Bracket

It is proved that given a divergence operator on the structural sheaf of graded commutative algebras of a supermanifold, it is possible to construct a generating operator for the Krashil’shchik-Schouten bracket. This is a particular case of the construction of generating operators for a special class of bigraded Gerstenhaber algebras. Also, some comments on the generalization of these results t...

متن کامل

Geometry of Vlasov kinetic moments: a bosonic Fock space for the symmetric Schouten bracket

The dynamics of Vlasov kinetic moments is shown to be Lie-Poisson on the dual Lie algebra of symmetric contravariant tensor fields. The corresponding Lie bracket is identified with the symmetric Schouten bracket and the moment Lie algebra is related with a bundle of bosonic Fock spaces, where creation and annihilation operators are used to construct the cold plasma closure. Kinetic moments are ...

متن کامل

The Gerstenhaber Bracket as a Schouten Bracket for Polynomial Rings Extended by Finite Groups Cris Negron and Sarah Witherspoon

We apply new techniques to compute Gerstenhaber brackets on the Hochschild cohomology of a skew group algebra formed from a polynomial ring and a finite group (in characteristic 0). We show that the Gerstenhaber brackets can always be expressed in terms of Schouten brackets on polyvector fields. We obtain as consequences some conditions under which brackets are always 0, and show that the Hochs...

متن کامل

A New Look at the Schouten-Nijenhuis, Frölicher-Nijenhuis and Nijenhuis-Richardson Brackets for Symplectic Spaces

In this paper we re-express the Schouten-Nijenhuis, the Frölicher-Nijenhuis and the Nijenhuis-Richardson brackets on a symplectic space using the extended Poisson brackets structure present in the path-integral formulation of classical mechanics.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae

سال: 1995

ISSN: 0019-3577

DOI: 10.1016/0019-3577(95)98200-u